Abstract
<abstract><p>The generalized Drinfeld-Sokolov system is a widely-used model that describes wave phenomena in various contexts. Many properties of this system, such as Hamiltonian formulations and integrability, have been extensively studied and exact solutions have been derived for specific cases. In this paper we applied the direct method of multipliers to obtain all low-order local conservation laws of the system. These conservation laws correspond to physical quantities that remain constant over time, such as energy and momentum, and we provided a physical interpretation for each of them. Additionally, we investigated the Lie point symmetries and first-order symmetries of the system. Through the point symmetries and constructing the optimal systems of one-dimensional subalgebras, we were able to reduce the system of partial differential equations to ordinary differential systems and obtain new solutions for the system.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.