Abstract

Via symbolic computation, this paper investigates a nonlinear Schrödinger (NLS) equation with self-consistent sources (SCSs), which can describe the nonlinear interaction between an electrostatic high-frequency wave and an ion-acoustic wave in a two-component homogeneous plasma. An infinite number of conservation laws is obtained by virtue of the Ablowitz–Kaup–Newell–Segur system. Bilinear form and bright one- and N-soliton solutions are also obtained via the Hirota method. Graphical descriptions of the one- and two-soliton solutions are presented. Through the comparison with the NLS equation, it is found that the SCSs lead to phase and velocity changes of the solitons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.