Abstract

A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney–Luke (BL) equation. It yields the well-known Kadomtsev–Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.