Abstract
We examine and explain the Luttinger-liquid character of models solvable by the Bethe ansatz by introducing a suitable bosonic operator algebra. In the case of the Hubbard chain, this involves two bosonic algebras which apply to all values of U, electronic density, and magnetization. Only at zero magnetization does not lead to the usual charge-spin separation. We show that our ``pseudoparticle'' operator approach clarifies, unifies, and extends several recent results, including the existence of independent right and left equations of motion and the concept of ``pseudoparticle'' (also known as ``Bethe quasiparticle'').
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.