Abstract

The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

Highlights

  • Social behavior, like phenotypes of any level of complexity, is regulated by the activity of genomic networks and resulting gene expression

  • Sociogenomics explores the relationship between social behavior and the genome

  • An important issue is the extent to which results from social insects can be used to understand social behavior in other animals. We address this question through computational studies of previously published experimental data on patterns of brain gene expression in honey bees in response to particular environmental conditions and stimuli

Read more

Summary

Introduction

Like phenotypes of any level of complexity, is regulated by the activity of genomic networks and resulting gene expression. At the same time that specific examples of genes influencing behavior were being discovered empirically[1,2], the field of systems biology was developing[3]. The power of systems biology is that it enables comprehensive dynamic patterns of transcription, translation, post-translational modification, and functioning of gene products to be observed and analyzed. These approaches provide fertile ground for the development of testable hypotheses and confident inferences about the relationship between the genome and phenome (the sum total of the organism’s phenotypic traits), even when the phenome is based on complex patterns of gene interactions. Sociogenomics focuses on how genes influence social behavior [2] and how environmental attributes—especially those related to the social environment—influence genome activity [5]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.