Abstract
Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.
Highlights
Biodiversity-rich tropical forests are being degraded worldwide, and the pace of forest destruction is exceptionally rapid in insular Southeast Asia [1]
Unique evolutionary lineages or genetically defined ‘‘Evolutionarily Significant Units’’ [12] are appropriate targets of conservation programs aimed at preserving genetic diversity among and within species; targeting empirically defined distinct evolutionary lineages has the added benefit of potentially removing the subjectivity sometimes associated with traditional taxonomy [13]
Molecular data were derived from all available genetic samples and included efforts to determine the sequence of the 12S mitochondrial gene fragment, the NADH Dehydrogenase Subunit 2 (ND2), and the Cytochrome B (CytB) gene region
Summary
Biodiversity-rich tropical forests are being degraded worldwide, and the pace of forest destruction is exceptionally rapid in insular Southeast Asia [1]. With only 4–8% of its original forest remaining [2], the Philippines has been designated as both a global conservation biodiversity hotspot [3] and a Megadiverse nation [4]—a distinction shared only with Madagascar. Within this archipelago, the Philippine tarsier, a small endemic nocturnal primate, has been enlisted as a flagship species for an emerging societal conservation movement and an expanding ecotourism industry [1,5]. Due to limited natural history data or consensus from other sources of information (morphology, bioacoustics, ecology), we argue that genetic data should be used to distinguish evolutionarily distinct tarsier population groups as objective, empirically defined conservation priorities
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.