Abstract

Abstract: Oligolectic bees collect pollen from one or a few closely related species of plants, whereas polylectic bees visit a variety of flowers for pollen. Because of their more restricted range of host plants, it maybe expected that specialists exist in smaller, more isolated populations, with lower effective population sizes than generalists. Consequently, we hypothesized that oligolectic bees have reduced levels of genetic variation relative to related polylectic species. To test this hypothesis, we used five phylogenetically independent pairs of species in which one member was oligolectic and the other was polylectic. We assayed genetic variation in our species pairs at an average of 32 allozyme loci. Within each species pair, the oligolectic member had fewer polymorphic loci, lower average allelic richness, and lower average expected heterozygosity than its polylectic relative. Averaged over all species pairs, this corresponds to a 21% reduction in allelic richness, a 72% reduction in the proportion of polymorphic loci, and an 83% reduction in expected heterozygosity in specialists compared with generalists. Our data support the hypothesis of reduced effective population size in oligolectic bees and suggest that they may be more prone to extinction as a result. We suggest that in instances in which bee specialists are involved in mutually codependent relationships with their floral hosts, these mutualisms may be endangered for genetic and ecological reasons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call