Abstract
Theory predicts that edaphic endemics should exhibit high levels of population differentiation due to restricted gene flow among patchily distributed habitats. Here, we tested this prediction with the federally threatened annual Geocarpon minimum, an edaphic endemic restricted to sandstone outcrops and slick spots associated with saline prairies in the Southeastern United States. We used AFLP data to quantify population genetic variation and structure in 13 G. minimum populations using a bulked sampling scheme. Modest but significant components of genetic variance are partitioned among populations (16%) and among regions (north, south; 3%). The maintenance of private bands within most G. minimum populations suggests limited gene flow among geographically isolated populations. However, a Mantel test failed to detect a pattern of isolation by distance. Estimates of within population variation in G. minimum are relatively low compared to other edaphic endemics with similar life-histories. Results suggest conservation efforts should focus on protecting genetically unique populations and ensuring that genetic variability is adequately captured in ex situ collections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.