Abstract

We have investigated the conservation of regulatory elements for sex- and tissue-specific gene expression in three dipteran species, Drosophila melanogaster, Musca domestica and Calliphora erythrocephala, using the yolk protein (yp) genes. Yolk proteins of the fruitfly, medfly, housefly and blowfly are very well conserved both in their sequence and their expression in ovarian follicle cells and in fat bodies of adult females. Furthermore, yp regulation by both hormonal and nutritional factors shows similar features in all four species. To study conservation of yp regulation in dipteran insects, we tested 5' flanking regions from one Musca yp gene and one Calliphora yp gene for enhancer functions in D. melanogaster. Two fragments of 823 and 1046 bp isolated from Musca and Calliphora yp genes, respectively, are able to direct correct expression of a reporter gene in the ovarian follicle cells of transformed Drosophila at specific stages during oogenesis. Surprisingly, these enhancers do not confer sex-specific reporter gene expression in the fat body, as expression was found in both sexes of the transformed flies. None-the-less by in vitro DNA/protein interaction assays, a 284-bp DNA region from the Musca yp enhancer was able to bind the Drosophila DOUBLESEX (DSX) protein, which in D.melanogaster confers sex-specific expression of yp. We speculate that the sex-determining pathway is not directly involved in yp regulation in Musca or Calliphora adult females, but depends instead on hormonal controls to achieve sex-specific expression of yp genes in the adult.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call