Abstract

Climate change mitigation is an important goal for cities globally. Energy production contributes more than half of the global greenhouse gas emissions, and thus the mitigation potential of local municipal energy systems is important for cities to recognize. The purpose of the study is to analyze the role of local municipal energy systems in the consumption-based carbon footprint of a city resident. The research supplements the previous carbon footprint assessments of city residents with an energy system implication analysis. The study includes 20 of the largest cities in Finland. The main findings of the study are as follows: first, the municipal combined heat and power energy system contributes surprisingly little (on average 18%) to the direct carbon footprint of city residents, supporting some previous findings about a high degree of outsourcing of emissions in cities in developed countries. Second, when indirect emissions (i.e., the implication of a municipal energy system on the national energy system) are allocated to city residents, the significance of the local energy system increases substantially to 32%. Finally, without the benefits of local combined heat and power technology based electricity consumption, the carbon footprints would have increased by an additional 13% to 47% due to the emissions from compensatory electricity production. The results also show that the direct application of consumption-based carbon assessment would imply a relatively low significance for municipal energy solutions. However, with a broader understanding of energy system dynamics, the significance of municipal energy increases substantially. The results emphasize the importance of the consequential energy system implications, which is typically left out of the evaluations of consumption-based carbon footprints.

Highlights

  • The share of anthropogenic GHG emissions due to energy use is globally estimated to be around 55% in 2011 [1]

  • Energy production contributes more than half of the global greenhouse gas emissions, and the mitigation potential of local municipal energy systems is important for cities to recognize

  • Energy systems contribute to the vast majority of global anthropogenic GHG emissions, and high mitigation expectations are put on the de-carbonization of energy systems in many countries and municipalities, the share of local and even national energy supply systems covers only part of the energy requirements of any municipality

Read more

Summary

Introduction

The share of anthropogenic GHG emissions due to energy use is globally estimated to be around 55% in 2011 [1]. Energy systems contribute to the vast majority of global anthropogenic GHG emissions, and high mitigation expectations are put on the de-carbonization of energy systems in many countries and municipalities, the share of local and even national energy supply systems covers only part of the energy requirements of any municipality. Cities and nations are part of highly globalized ecosystems where commodities are supplied based on market mechanisms. This leads to a situation in which the GHG emissions caused by a city or a nation due to demand can deviate significantly from those occurring within its geographical area [3], even if all the locally needed energy was generated locally. When looking at the regional or city level, the share is likely even higher [3,5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call