Abstract

Quantum fluctuation consequences have significant role in high-energy physics. These fluctuation often regarded as a correction of the infrared (IR) limit. Such correction contribute to the high-energy limit of thermodynamical quantities and the stability conditions of black holes. In this work, we analyze the thermal stability of black holes in the presence of thermal fluctuations. We consider AdS black hole in Born–Infeld massive gravity with non-abelian hair and the charged AdS black hole with a global monopole. We develop many thermodynamical quantities such as entropy, temperature, pressure, heat capacity of a system at constant volume and pressure, ratio between the heat capacities at constant pressure and volume, Gibbs free energy and Helmholtz free energy for both black holes. The critical behavior and phase transitions of black holes are also presented. We also observe the local and global stability of black holes in the grand canonical ensemble and canonical ensemble for the specific values of different parameters, such as, symmetry breaking parameter η, massive parameter m and non-abelian hair ν.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.