Abstract
Scaling of the form x=ax′, t=aht′, q=amQ of a nonlinear partial differential equation for q is connected with the form of the auxiliary functions in an inverse scattering method (AKNS scheme). Solvability of an equation by this scheme is treated. It is shown that only equations with m=2 are solvable by using the method of inverse scattering in conjunction with the Schrödinger eigenvalue equation. The criterion m=2 restricts the form of the terms in these equations. The terms, powers of q and its derivatives, can be found by inspection. A separate problem, the decay of a single soliton in the Korteweg–de Vries equation with damping, is solved using only scaling properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.