Abstract

Summary1. Lake restoration from eutrophication often rests on a simple paradigm that restriction of phosphorus sources will result in recovery of former relatively clear‐water states. This view has apparently arisen from early successful restorations of deep lakes in catchments of poorly weathered rocks. Lakes in the lowlands, however, particularly shallow ones, have proved less tractable to restoration. This study of three lowland lakes provides insights that illuminate a more complex picture.2. The lakes lie in a sequence along a single stream in a mixed urban and rural landscape. Severely deoxygenating effluent from an overloaded sewage treatment works was diverted from the catchment in 1991. Effects on two lakes, Little Mere (zmax <2 m) and Rostherne Mere (zmax 31 m) were followed until 2002. Mere Mere (zmax = 8 m), upstream of the former works, acted as a comparison for changes in water chemistry. Mere Mere showed no change in total phosphorus (TP), total inorganic nitrogen, or planktonic chlorophyll a concentrations. Increased winter rainfall was associated with higher winter soluble reactive phosphorus (SRP) and ammonium concentrations in its water.3. Little Mere changed from a deoxygenated, highly enriched, fishless system, with large populations of Daphnia magna Straus, clear water and about 40% aquatic plant cover, to a slightly less clear system following diversion. Daphnia magna was replaced by D. hyalina Leydig as fish recolonised. Spring peaks of chlorophyll a declined but summer concentrations increased significantly. Annual mean chlorophyll a concentrations thus showed no change. Submerged plants became more abundant (up to 100% cover), with fluctuating community composition from year to year. Summer release of SRP from the sediment was substantial and has not decreased since 1993. The summer phytoplankton was apparently controlled by nitrogen availability perhaps with some influence of zooplankton grazing. SRP was always very abundant. The lake appeared to have reached a quasi‐stable state by 2002.5. Rostherne Mere showed a steady decline in TP and SRP concentrations following effluent diversion apparently as a result of steady dilution by water with lower phosphorus concentration. Decline in phosphorus concentrations was much less rapid than expected because of internal remobilisation from the hypolimnion and sediments. There have been no changes in chlorophyll a concentration or of nitrogen availability and by 2002 the phytoplankton probably remained limited by a combination of mixing, grazing and nitrogen.6. A seeming paradox is, thus, that immense changes in phosphorus budgets have shown no consequences for phytoplankton chlorophyll concentrations in either of the lakes, although the seasonal distribution has altered in Little Mere. Although these case studies deviate from others, for both shallow and deep lakes, they represent distinctive situations rather than undermining conventional models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call