Abstract

The surface of mammalian cells is neither smooth nor flat and cells have several times more plasma membrane than the minimum area required to accommodate their shape. We discuss the biological function of this apparent excess membrane that allows the cells to migrate and undergo shape changes and probably plays a role in signal transduction. Methods for studying membrane folding and topography--atomic force microscopy, scanning ion conductance microscopy, fluorescence polarization microscopy and linear dichroism--are described and evaluated. Membrane folding and topography is frequently ignored when interpreting microscopy data. This has resulted in several misconceptions regarding for instance colocalization, membrane organization and molecular clustering. We suggest simple ways to avoid these pitfalls and invoke Occam's razor--that simple explanations are preferable to complex ones. Topography, i.e. deviations from a smooth surface, should always be ruled out as the cause of anomalous data before other explanations are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.