Abstract

The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of the outer hair cell’s somatic motility, is nearly invariant over the cochlear length. It is puzzling how actuators with a constant force capacity can operate under such a wide stiffness range. We hypothesize that the organ of Corti sets the mechanical conditions so that the outer hair cell’s somatic motility effectively interacts with the media of traveling waves—the basilar membrane and the tectorial membrane. To test this hypothesis, a computational model of the gerbil cochlea was developed that incorporates organ of Corti structural mechanics, cochlear fluid dynamics, and hair cell electro-physiology. The model simulations showed that the micro-mechanical responses of the organ of Corti are different along the cochlear length. For example, the top surface of the organ of Corti vibrated more than the bottom surface at the basal (high frequency) location, but the amplitude ratio was reversed at the apical (low frequency) location. Unlike the basilar membrane stiffness varying by a factor of 1700 along the cochlear length, the stiffness of the organ of Corti complex felt by the outer hair cell remained between 1.5 and 0.4 times the outer hair cell stiffness. The Y-shaped structure in the organ of Corti formed by outer hair cell, Deiters cell and its phalange was the primary determinant of the elastic reactance imposed on the outer hair cells. The stiffness and geometry of the Deiters cell and its phalange affected cochlear amplification differently depending on the location.

Highlights

  • The organ of Corti of the mammalian cochlea is uniquely organized with structurally significant sensory receptor cells and their supporting cells that suggest their mechanical role [1,2]

  • The organ of Corti is sandwiched between two matrices reinforced with collagen fibers, the tectorial membrane (TM) and the basilar membrane (BM)

  • For the rest of this paper, we focus on micro-mechanical responses of the OCC instead of fluid pressure or the outer hair cell’s electrical responses

Read more

Summary

Introduction

The organ of Corti of the mammalian cochlea is uniquely organized with structurally significant sensory receptor cells and their supporting cells that suggest their mechanical role [1,2]. The inner and outer pillar cells form a triangular tunnel throughout the cochlear length. The Deiters cells, their phalangeal processes and the outer hair cells form a repeating structural. Organ of Corti Micro-Mechanics pattern resembling the truss structure of a bridge. The organ of Corti is sandwiched between two matrices reinforced with collagen fibers, the tectorial membrane (TM) and the basilar membrane (BM). The longitudinally graded stiffness of the BM forms the physical basis for the characteristic cochlear traveling waves [3], and the tonotopy of the mammalian cochlea [4,5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.