Abstract

Laminopathies are causally associated with mutations on the Lamin A/C gene (LMNA). To date, more than 400 mutations in LMNA have been reported in patients. These mutations are widely distributed throughout the entire gene and are associated with a wide range of phenotypes. Unfortunately, little is known about the mechanisms underlying the effect of the majority of these mutations. This is the case of more than 40 mutations that are located at exon 4. Using CRISPR/Cas9 technology, we generated a collection of Lmna exon 4 mutants in mouse C2C12 myoblasts. These cell models included different types of exon 4 deletions and the presence of R249W mutation, one of the human variants associated with a severe type of laminopathy, LMNA-associated congenital muscular dystrophy (L-CMD). We characterized these clones by measuring their nuclear circularity, myogenic differentiation capacity in 2D and 3D conditions, DNA damage, and levels of p-ERK and p-AKT (phosphorylated Mitogen-Activated Protein Kinase 1/3 and AKT serine/threonine kinase 1). Our results indicated that Lmna exon 4 mutants showed abnormal nuclear morphology. In addition, levels and/or subcellular localization of different members of the lamin and LINC (LInker of Nucleoskeleton and Cytoskeleton) complex were altered in all these mutants. Whereas no significant differences were observed for ERK and AKT activities, the accumulation of DNA damage was associated to the Lmna p.R249W mutant myoblasts. Finally, significant myogenic differentiation defects were detected in the Lmna exon 4 mutants. These results have key implications in the development of future therapeutic strategies for the treatment of laminopathies.

Highlights

  • Lamins are nuclear intermediate filaments proteins that form a meshwork underlying the inner side of the nuclear membrane [1]

  • Upon studying a number of molecular, cellular, and functional features, we can conclude that the subcellular localization of key members of the LINC complex and nuclear envelope, including Lamin A/C, Lamin B1, Emerin, SUN1, and SUN2, as well as the nuclear membrane integrity and myogenic differentiation capacity, were negatively affected

  • The Emerin extranuclear localization, compatible with endoplasmic reticulum, detected in null, delta, and R249W clones, is similar to the previously reported for Lmna null, LmnaL530P/L530P, LmnadK32, and LmnaN195K mouse myoblasts, as well as Lamin A/C gene (LMNA) p.Y259X patient cells [15,25,26,27,36]

Read more

Summary

Introduction

Lamins are nuclear intermediate filaments proteins that form a meshwork underlying the inner side of the nuclear membrane [1]. Laminopathies are a group of human rare diseases mainly associated with different mutations on the Lamin A/C gene (LMNA). Lamin A/C proteins are main components of the lamin. Laminopathies include at least 15 different diseases that are divided in 4 different categories depending on the affected tissues: striated muscle, adipose tissue, peripheral nerves, or multiple tissues [6].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call