Abstract

ABSTRACTWe investigated dam behaviours during high-flow events and their robustness against perturbations in meteorological conditions using the H08 global hydrological model. Differences in these behaviours were examined by comparing simulation runs, with and without dams and using multiple meteorological datasets, at a case-study site, Fort Peck Dam on the Missouri River, USA. The results demonstrated that dam-regulated river flow reduced temporal variability over large time periods and also dampened inter-forcing discrepancies in river discharge (smoothing effects). However, during wet years, differences in peak flow were accentuated downstream of the dam, resulting in divergence in simulated peak flow across the meteorological forcing (pulsing effect). The pulsing effect was detected at other major dams in global simulations. Depending upon the meteorological forcing, the dams act as a selective filter against high-flow events. Synergy between a generic dam scheme and differences in meteorological forcing data might introduce additional uncertainties in global hydrological simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.