Abstract
Social behavior represents an integral part of behavioral repertoire of rats particularly sensitive to pharmacological and environmental influences. The aim of the present study was to investigate whether early postnatal clonazepam (CZP) exposure can induce age-dependent changes related to expression of social behavior. The drug was administered from postnatal day (P) 7 until P11 at daily doses of 0.1, 0.5 and 1.0 mg/kg i.p. We designed three experiments to assess whether exposure to CZP affects social behavior in respect to the age of rats and the test circumstances, specifically their familiarity with test conditions during adolescence (P32), social behavior in juveniles and adolescents (P18–P42) and social behavior in a resident-intruder paradigm. The frequency and duration of a various patterns of social behavior related to play and social investigation not related to play were evaluated. The results showed that CZP postnatal exposure decreased social play behavior regardless of age and familiarity or unfamiliarity of experimental environment but did not affect the social investigation per se. When rats were confronted with an intruder in their home cages intense wrestling and inhibition of genital investigation were found. In conclusion, these findings show that short-term CZP postnatal exposure inhibits social play behavior and alters specific patterns of social behavior in an age and environment related manner.
Highlights
Benzodiazepine (BZD) exposure during brain development can result in persistent modification of brain functions, behavioral alterations and cognitive deficits
BODY WEIGHT There was no difference in average body weight (BW) between litters or between animals selected for individual treatments
In animals exposed to higher dose of CZP (1.0 mg/kg/day) relative body weights were still lower at P15 and P18
Summary
Benzodiazepine (BZD) exposure during brain development can result in persistent modification of brain functions, behavioral alterations and cognitive deficits (for rev. Gai and Grimm, 1982; Tucker, 1985; Kellogg, 1988). Gai and Grimm, 1982; Tucker, 1985; Kellogg, 1988). Tucker, 1985). Administration of GABAergic drugs including BZDs during the 1st week of life increases apoptosis (Bittigau et al, 2002; Forcelli et al, 2012). Changes at both molecular and cellular level can result in alteration of neuronal circuitry in the immature brain and induce functional impairment
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.