Abstract

ABSTRACT Moons orbiting rocky exoplanets in compact orbits about other stars experience an accelerated tidal evolution, and can either merge with their parent planet or reach the limit of dynamical instability within a Hubble time. We review the parameter space over which moons become unbound, including the effects of atmospheric tides on the planetary spin. We find that such tides can change the final outcome from merger to escape, albeit over a limited parameter space. We also follow the further evolution of unbound moons, and demonstrate that the overwhelmingly most likely long-term outcome is that the unbound moon returns to collide with its original parent planet. The dust released by such a collision is estimated to reach optical depths $\sim 10^{-3}$, exhibit characteristic temperatures of a few hundred degrees kelvin, and last for a few thousand years. These properties make such events an attractive model for the emerging class of middle-aged main-sequence stars that are observed to show transient clouds of warm dust. Furthermore, a late collision between a planet and a returning moon on a hyperbolic orbit may sterilize an otherwise habitable planet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call