Abstract

Patches with a diatom mat were compared with adjacent eroded patches on an intertidal flat in the Ems-Dollard estuary. Distinction between patches was made on the basis of chlorophyll- a (chl- a) concentration and relief. Short-term variations and depth distribution were investigated for carbohydrates (water-soluble and water-insoluble carbohydrates), β-glucosidase activity and heterotrophic bacterial production and abundance. The major differences between mat patches and eroded patches were confined to the upper 6 mm. From 6 to 20 mm depth variables in mat patches and eroded patches were roughly comparable, with the exception of the bacterial abundance and β-glucosidase activity. Distinct increases in carbohydrates, bacterial production and abundance during tidal flat exposure were most pronounced in the mat surface layer, but were still detectable in the eroded patches for the different carbohydrate fractions. Concentrations of water-soluble carbohydrates were substantially higher in mats than in eroded patches. This concurred with a much higher bacterial production and abundance in mats than in eroded patches. The β-glucosidase activity in the mat surface was low compared to this activity in eroded patches. In diatom mats, β-glucosidase showed highest activities between 6 and 12 mm, while in eroded patches this maximum occurred at 0–2 mm. Patterns suggest inhibition of the β-glucosidase activity at high concentrations of water-soluble carbohydrate concentrations and a release of inhibition with declining carbohydrate concentrations. Interestingly, concentrations of water-insoluble carbohydrates (EDTA-extracted carbohydrates) did neither clearly differ between mat patches and eroded patches, nor changed substantially with depth. The observation that water-insoluble carbohydrate-to-chl- a ratios were higher outside the mat layer than in the mat, which has a larger stability than eroded patches, indicates that it is a poor index for sediment erodibility. The same holds true for water-soluble carbohydrate concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.