Abstract
Theory predicts that when different barriers to gene flow become coincident, their joint effects enhance reproductive isolation and genomic divergence beyond their individual effects, but empirical tests of this "coupling" hypothesis are rare. Here, we analyze patterns of gene exchange among populations of European corn borer moths that vary in the number of acting barriers, allowing for comparisons of genomic variation when barrier traits or loci are in coincident or independent states. We find that divergence is mainly restricted to barrier loci when populations differ by a single barrier, whereas the coincidence of temporal and behavioral barriers is associated with divergence of two chromosomes harboring barrier loci. Furthermore, differentiation at temporal barrier loci increases in the presence of behavioral divergence and differentiation at behavioral barrier loci increases in the presence of temporal divergence. Our results demonstrate how the joint action of coincident barrier effects leads to levels of genomic differentiation that far exceed those of single barriers acting alone, consistent with theory arguing that coupling allows indirect selection to combine with direct selection and thereby lead to a stronger overall barrier to gene flow. Thus, the state of barriers-independent or coupled-strongly influences the accumulation of genomic differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.