Abstract

Various experimental data acquired during the visit of Halley's comet in 1986 have shown that the amount of carbon produced due to photodissociation of parent carbon bearing species is not ample enough to explain the observations. This requires the presence of an additional source of atomic carbon. One of the possible source could be auroral-type activities resulting from the precipitation of high-energy “auroral electrons” of solar wind origin, the evidence of which have been inferred from many observations at comet Halley. We have developed a coupled chemistry-transport model to study the role of auroral and photoelectron impact as well as of chemistry on the modelling of carbon in the inner coma (≤10 4 km) of comet Halley. Our study suggest that electron impact dissociation of CO is the major source of carbon production in the inner coma, not the recombination of CO + as suggested by earlier workers, while transport is the main loss process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.