Abstract

The consequences of the fragmentation of an Earth-threatening asteroid due to an attempted deflection are examined in this paper. The minimum required energy for a successful impulsive deflection of a threatening object is computed and compared to the energy required to break up a small size asteroid. The results show that the fragmentation of an asteroid that underwent an impulsive deflection, such as a kinetic impact or a nuclear explosion, is a very plausible event.Astatistical model is used to approximate the number and size of the fragments as well as the distribution of velocities at the instant after the deflection attempt takes place. This distribution of velocities is a function of the energy provided by the deflection attempt, whereas the number and size of the asteroidal fragments is a function of the size of the largest fragment. The model also takes into account the gravity forces that could lead to a reaggregation of the asteroid after fragmentation. The probability distribution of the pieces after the deflection is then propagated forward in time until the encounter with Earth. A probability damage factor (i.e., expected damage caused by a given size fragment multiplied by its impact probability) is then computed and analyzed for different plausible scenarios, characterized by different levels of deflection energies and lead times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.