Abstract

ABSTRACT Objective Social interaction at a young age plays a critical role in the normal maturation of the brain and neuroendocrine system. Deprivation of social contacts has been associated with numerous cognitive and emotional abnormalities. However, neurobiological mechanisms that may underlie these effects remain poorly understood. In the present study, we examined the effect of 4–6-week social isolation during the adolescent period on rat spatial memory and emotional responses and investigated synaptic plasticity in the dorsal (DH) and ventral hippocampus (VH), which are known to be differently involved in these behaviors. Methods Male Wistar rats were housed individually or in groups of four for 4–6 weeks immediately after weaning. At the end of the isolation period, rats were subjected to behavioral testing or electrophysiological studies. Behavioral tests included behavioral excitability, sucrose preference, open field (OF), elevated plus maze (EPM), Morris water maze (MWM), and Y-maze test. For plasticity experiments, long-term potentiation (LTP) in Schaffer collateral/СA1 synapses was induced using high-frequency stimulation (HFS) on transverse hippocampal slices. Results Social isolation induced hyperexcitability, increased anxiety- and anhedonia-like behaviors, while no significant changes were observed in cognitive tasks. Electrophysiological recordings revealed enhanced short-term potentiation (STP) in the VH and suppressed LTP in the DH of isolated animals compared to group-housed controls. Conclusions Our findings suggest that adolescent social isolation has distinct effects on synaptic plasticity in the VH and DH and leads to emotional dysregulation rather than impairments in cognitive performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call