Abstract

This study evaluates the effect of replacement of N2 with CO2 as atmosphere in catalytic pyrolysis of waste lignocellulosics with acidic and metal-modified zeolites, respectively, on the 16 EPA priority pollutant polycyclic aromatic hydrocarbons (PAHs) in bio-oils. By coupling solid phase extraction pretreatment with single ion monitoring detection, it is found that the replacement alleviates PAHs in bio-oil concerning synchronously abating the 16 PAHs with low, medium and high molecular weights, and the benzo[a]pyrene equivalent toxicity of bio-oil decreases. Meanwhile, CO2 decreases the content of small oxygenates, e.g. furans, ketones, acids, and increases phenolics and aromatics affording more stable and valuable bio-oils. Moreover, CO2 enhances carbon conversion efficiency, especially in combination with Fe-modified zeolite, which presents a synergistic effect. This study indicates the practical application of CO2 as an atmosphere in catalytic pyrolysis to improve the bio-oil quality by suppressing PAHs formation and adjusting compound constituent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call