Abstract

We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation.

Highlights

  • Statistical physics has got the edge over socio-economic sciences in the understanding of complex systems [1,2,3,4,5,6,7]

  • We find that the improved three state agent-based herding model reproduces the power law statistics observed in the empirical data extracted from the NYSE Trades and Quotes database, Warsaw Stock Exchange and NASDAQ OMX Vilnius Stock Exchange

  • The proposed consentaneous agent-based and stochastic model of the financial markets is a result of our previous research in stochastic modeling, see references in [25,41], and agent-based modeling of herding interaction [33,34]

Read more

Summary

Introduction

Statistical physics has got the edge over socio-economic sciences in the understanding of complex systems [1,2,3,4,5,6,7]. This happened due to the fact that physicists were able to start from the understanding of simple phenomena via simple models and later built the complexity up together with the increasing complexity of the considered phenomena. Financial markets are one of the most interesting examples of such complex systems. The intense applications of these ideas is still ongoing [9,10,11] and the challenge is still open

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.