Abstract
This paper develops algorithms to train linear support vector machines (SVMs) when training data are distributed across different nodes and their communication to a centralized node is prohibited due to, for example, communication overhead or privacy reasons. To accomplish this goal, the centralized linear SVM problem is cast as the solution of coupled decentralized convex optimization subproblems with consensus constraints on the parameters defining the classifier. Using the method of multipliers, distributed training algorithms are derived that do not exchange elements from the training set among nodes. The communications overhead of the novel approach is fixed and fully determined by the topology of the network instead of being determined by the size of the training sets as it is the case for existing incremental approaches. An online algorithm where data arrive sequentially to the nodes is also developed. Simulated tests illustrate the performance of the algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.