Abstract

In the present work, quantitative structure-activity relationship (QSAR) models have been developed for ecotoxicity of pharmaceuticals on four different aquatic species namely Pseudokirchneriella subcapitata, Daphnia magna, Oncorhynchus mykiss and Pimephales promelas using genetic algorithm (GA) for feature selection followed by Partial Least Squares regression technique according to the Organization for Economic Co-operation and Development (OECD) guidelines. Double cross-validation methodology was employed for selecting suitable models. Only 2D descriptors were used for capturing chemical information and model building, whereas validation of the models was performed by considering various stringent internal and external validation metrics. Interestingly, models could be developed even without using any LogP terms in contrary to the usual dependence of toxicity on lipophilicity. However, the current manuscript proposes highly robust and more predictive models employing computed logP descriptors. The applicability domain study was performed in order to set a predefined chemical zone of applicability for the obtained QSAR models, and the test compounds falling outside the domain were not taken for further analysis while making a prioritized list. An additional comparison was made with ECOSAR, an online expert system for toxicity prediction of organic pollutants, in order to prove predictability of the obtained models. The obtained robust consensus models were utilized to predict the toxicity of a large dataset of approximately 9300 drug-like molecules in order to prioritize the existing drug-like substances in accordance to their acute predicted aquatic toxicities following a scaling technique. Finally, prioritized lists of 500 most toxic chemicals obtained by respective consensus models and those predicted from ECOSAR tool have been reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call