Abstract

As for the multi-agent systems (MASs) with time-varying switching subject to deception attacks, the leader-following consensus problem is studied in this article. The one-sided Lipschitz (OSL) condition is utilized for the nonlinear functions, which makes the results more general and relaxed than those obtained by Lipschitz condition. The nonidentical double event-triggering mechanisms (ETMs) are adopted for only a fraction of agents, and each agent transmits the data according to its own necessity. Semi-Markov process modeling with time-varying switching probability is adopted for switching topology and deception attacks occurring in transmission channel are considered. By using the cumulative distribution function (CDF) and the linear matrix inequality (LMI) technology, sufficient conditions for MASs to achieve consensus in mean square are obtained. An effective algorithm is presented to obtain the event-based control gains. The merits of the proposed control scheme are demonstrated via a simulation example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.