Abstract

This paper is aimed at studying the consensus of linear multi-agent systems subject to actuator saturation. In order to solve the consensus problem, a new family of scheduled low-and-high-gain decentralized control laws are designed, provided that the dynamics of each agent is asymptotically null controllable with bounded controls, and such control laws rely on the asymptotic property of a class of parametric algebraic Ricatti equations. It is shown that the consensus of the systems with connected and fixed topology can be achieved semi-globally asymptotically via the local error low-and-high-gain feedback. An illustrative example with simulations shows that our method as well as control protocols is effective for the consensus of the linear multi-agent systems subject to actuator saturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.