Abstract

ABSTRACTThis paper proposes a consensus protocol for continuous-time double-integrator multi-agent systems under noisy communication in directed topologies. Each agent’s control input relies on its own velocity and the relative positions with neighbours; it does not require the relative velocities. The agent receives its neighbours’ positions information corrupted by time-varying measurement noises whose intensities are proportional to the absolute relative distance that separates the agent from the neighbours. The consensus protocol is mainly based on the velocity damping gain to derive conditions under which the unbiased mean square χ-consensus is achieved in directed fixed topologies, and the unbiased mean square average consensus is achieved in directed switching topologies. The mean square state errors are quantified for both the positions and velocities. Finally, to illustrate the approach presented, some numerical simulations are performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.