Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Highlights
Dynein family motor proteins form multiple different dynein complexes in mammals, with important roles in a wide range of cellular functions (King, 2017; Osinka et al, 2019; Roberts, 2018)
The heavy and intermediate chains are specific to certain dynein complexes, while the light chains may be components of both cytoplasmic and axonemal dynein machinery, and in some cases, nondynein complexes
The gene currently approved as DYNLT1 (HGNC ID: 11697) was first approved using the symbol TCTEL1 based on homology with the mouse gene Tcte1 (t-complex associated testis expressed 1; Watanabe et al, 1996), which was reported to be expressed in murine testes (Lader et al, 1989; Sarvetnick et al, 1989)
Summary
Dynein family motor proteins form multiple different dynein complexes in mammals, with important roles in a wide range of cellular functions (King, 2017; Osinka et al, 2019; Roberts, 2018). Dyneins can be broadly classified into two groups: cytoplasmic and axonemal. Dynein complexes “walk” toward the minus ends of microtubules; while doing so, they can transport a variety of cargoes within cells (Trokter et al, 2012). The motor activity of these complexes allows them to play key roles in enabling motility of whole cells, generating fluid flow across cell surfaces, and transporting organelles and other components within the cytoplasm. Dynein subunits are classified by mass into four categories: heavy (∼520 kD), intermediate (∼70 –140 kD), light intermediate (∼53–59 kD), and light (∼10–30 kD) chains (Pfister et al, 2006). The heavy and intermediate chains are specific to certain dynein complexes, while the light chains may be components of both cytoplasmic and axonemal dynein machinery, and in some cases, nondynein complexes. The light intermediate chains are present only in the cytoplasmic dynein class
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.