Abstract

This work studies consensus strategies for networks of agents with limited memory, computation, and communication capabilities. We assume that agents can process only values from a finite alphabet, and we adopt the framework of finite fields, where the alphabet consists of the integers {0,…,p−1}, for some prime number p, and operations are performed modulo p. Thus, we define a new class of consensus dynamics, which can be exploited in certain applications such as pose estimation in capacity and memory constrained sensor networks. For consensus networks over finite fields, we provide necessary and sufficient conditions on the network topology and weights to ensure convergence. We show that consensus networks over finite fields converge in finite time, a feature that can be hardly achieved over the field of real numbers. For the design of finite-field consensus networks, we propose a general design method, with high computational complexity, and a network composition rule to generate large consensus networks from smaller components. Finally, we discuss the application of finite-field consensus networks to distributed averaging and pose estimation in sensor networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.