Abstract
PurposeExperts may adjust their assessments through communication and mutual influence, and this dynamic evolution relies on the spread of internal trust relationships. Due to differences in educational backgrounds and knowledge experiences, trust relationships among experts are often incomplete. To address such issues and reduce decision biases, this paper proposes a probabilistic linguistic multi-attribute group decision consensus model based on an incomplete social trust network (InSTN).Design/methodology/approachIn this paper, we first define the new trust propagation operators based on the operations of Probability Language Term Set (PLTS) with algebraic t-conorm and t-norm, which are combined with trust aggregation operators to estimate InSTN. The adjustment coefficients are then determined through trust relations to quantify their impact on expert evaluation. Finally, the particle swarm algorithm (PSO) is used to optimize the expert evaluation to meet the consensus threshold.FindingsThis study demonstrates the feasibility of the method through the selection of treatment plans for complex cases. The proposed consensus model exhibits greater robustness and effectiveness compared to traditional methods, mainly due to the effective regulation of trust relations in the decision-making process, which reduces decision bias and inconsistencies.Originality/valueThis paper introduces a novel probabilistic linguistic multi-attribute swarm decision consensus model based on an InSTN. It proposes a redefined trust propagation and aggregation approach to estimate the InSTN. Moreover, the computational efficiency and decision consensus accuracy of the proposed model are enhanced by using PSO optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Computing and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.