Abstract

Existing fuzzy clustering ensemble approaches do not consider dependability. This causes those methods to be fragile in dealing with unsuitable basic partitions. While many ensemble clustering approaches are recently introduced for improvement of the quality of the partitioning, but lack of a median partition based consensus function that considers more participate reliable clusters, remains unsolved problem. Dealing with the mentioned problem, an innovative weighting fuzzy cluster ensemble framework is proposed according to cluster dependability approximation. For combining the fuzzy clusters, a fuzzy co-association matrix is extracted in a weighted manner out of initial fuzzy clusters according to their dependabilities. The suggested objective function is a constrained nonlinear objective function and we solve it by sparse sequential quadratic programming (SSQP). Experimentations indicate our method can outperform modern clustering ensemble approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.