Abstract

The Pelvic Floor Disorders Consortium (PFDC) is a multidisciplinary organization of colorectal surgeons, urogynecologists, urologists, gynecologists, gastroenterologists, radiologists, physiotherapists, and other advanced care practitioners. Because all these specialists are dedicated to the care of patients with pelvic floor disorders, but sometimes approach evaluation and treatment of patients with pelvic floor complaints with differing perspectives, the PFDC was formed to arrange collaboration between these specialties. The PFDC’s goal is to collaborate to develop and evaluate educational programs, create clinical guidelines and algorithms, and promote overall quality of care in this unique population. The following recommendations arising from this effort represent the work product of the PFDC Working Group on Fluoroscopic Imaging of Pelvic Floor Disorders. The objective was to generate inclusive, rather than prescriptive, guidance for all practitioners, irrespective of discipline, in the care and treatment of patients with pelvic floor disorders. This process was intended to clarify which domains of fluoroscopic defecography have consensus among multidisciplinary experts, and which areas deserve further dedicated research. STATEMENT OF THE PROBLEM Fluoroscopic defecography (FD) is a critical tool long used in the evaluation of defecatory disorders. Like most imaging studies, such examinations are ordered by multiple different specialties each with their own needs from the examination and different means of interpretation. Fluoroscopic defecography provides functional evaluation during defecation and demonstrates the interplay of small bowel, distal colon, rectum and the pelvic organs during evacuation. There are many excellent articles written on FD from radiological,1 colorectal,2 or urogynecologic perspectives.3 However, different definitions of pathology, different protocols, and contradicting interpretations of these tests are often described. This lack of consensus leads to a significant variation in performance, use, and applicability to clinical practice among health care providers and institutions and even within institutions.4 As a result, research efforts or publications that use radiological images to quantify or define studied pathology cannot be pulled together into meaningful meta-analyses, and data cannot be easily compared from study to study. Furthermore, imaging may need to be repeated when the studies are performed at outside institutions due to variations in technique or interpretation. Discordant findings on such studies may contribute to patient and physician confusion, particularly because patients often develop perceptions regarding the severity of their pathology based on radiological reports.5,6 Thus, this effort was undertaken to address some of these inconsistencies by initiating a consensus process that included representatives from colon and rectal surgery, female pelvic medicine and reconstructive surgery, female urology, gastroenterology, physiotherapy, radiology, urology, and their respective advanced practice practitioners, thus allowing for all voices to be heard in discussion to reach unity, which, via an a priory decision by the group, was defined as a 70% consensus. Participants agreed, a priori, that a decision reaching a 70% consensus would be adopted unanimously by the group for the sake of promoting multidisciplinary collaboration and cohesiveness as the minimum suggested baseline. With this understanding, the group convened to review the relevant literature, discuss the current radiological protocols used to perform FD, and provide each other with input on the clinical significance of the various possible radiological observations and measurements. The goal was to create a template for FD technique that is clinically relevant, radiologically feasible, and ultimately useful in efforts to standardize the care of patients with pelvic floor conditions. Of note, this is not meant to be an exhaustive description or pictorial essay of all disease processes found on FD. Rather, this is an effort to identify areas of consensus across disciplines so that a common language can be utilized to achieve the shared goal of caring for patients with defecatory pelvic floor disorders. Areas where consensus cannot be achieved will become topics for further research to help further standardize best practices in the future. METHODOLOGY This document was created at the initiative of the Pelvic Floor Disorders Consortium (PFDC) Working Group on Fluoroscopic Imaging. The PFDC is composed of clinicians with demonstrated expertise in the care and treatment of pelvic floor conditions. The Working Group was created by enlisting a subset of Pelvic Floor Consortium members by invitation (Table 1). Invitation criteria included leadership in the field of pelvic floor disorders with academic scholarship and history of cross-disciplinary collaboration. Members of the working group participated in at least 2 group preliminary phone calls and researched an assigned topic. Each topic had at least 2 members assigned, always from different specialties. Each group identified the literature on a relevant topic or controversy and performed a careful review of the literature using a specified format to address these points systematically by using a standardized literature review format. TABLE 1. - Members of the Expert Panel, in alphabetical order Author Institution Bordeianou, Liliana Massachusetts General Hospital Paquette, Ian M University of Cincinnati College of Medicine Rosman, David Mass General Massachusetts General Hospital Atkinson, Sarah J University of Washington Ayscue, Jennifer Medstar Washington Hospital Basilio, Pedro Clinica de Saúde Intestinal -Rio de Janeiro, BrazilColorectal Surgeon Institute D’Or de Oncologia - Clinica São Vicente Bhullar, Jasneet UPMC Williamsport El Sayad, Rania Farouk Cairo University Hospitals Huang, Emily Ohio State University Hull, Tracy Cleveland Clinic Khatri, Guarav UT Southwestern Krishnamurty, Devi Mukkai Creighton University Mimura, Toshiki Jichi Medical University Ogilve, James W Jr Michigan State University Palmer, Suzanne L Keck School of Medicine, University of Southern California Parlade, Albert J Cleveland Clinic Florida Ratto, Carlo Catholic University, Foundation University Hospital Schizas, Alexis Guy’s and St. Thomas Hospital, London Snyder, Michael McGovern School of Medicine Speranza, Jenny University of Rochester Tyler, Kelly University of Massachusetts Baystate Wexner, Steven D Cleveland Clinic Florida Yamana, Tetsuo Tokyo Yamate Medical Center Zutshi, Massarat Cleveland Clinic These reviews involved an organized search of MEDLINE, PubMed, EMBASE, and the Cochrane Database of Collected Reviews performed with an end date of April 1, 2019. Retrieved publications were limited to the English language, but no limits on year of publication were applied. The search terms included “fecal incontinence, urinary incontinence, constipation, lower urinary tract symptoms in men and women, and pelvic floor disorders in men and women.” The search strategies used “defecography,” “proctography,” “defecogram,” fluorodefecography,” “fluoroscopic,” “dynamic,” “enterocoele,” “omentocele,” “rectocele,” “intussusception,” “contrast,” “pubococcygeal line,” “constipation,” “pelvic floor,” “rectal prolapse,” “perineal descent,” “radiological definition,” and “radiological management” as primary search terms. Directed searches of the embedded references from the primary articles were also performed. Criteria for inclusion of the references included articles that described technical components of radiological measurements discussed during the meeting, or clinically relevant literature describing use of radiological imaging in clinical practice. The working groups then presented their preliminary research to the consortium at large for further discussion. Pelvic Floor Consortium Expert Meeting The PFDC Expert Meeting convened on June 2, 2019 in Cleveland, Ohio. It included 126 in-person or online participants from the United States, Europe, Asia, England, and Canada. These experts belonged to several subspecialties (colorectal surgery, gastroenterology, urogynecology, urology, physiotherapy, and radiology). There were also members of numerous professional societies involved in the diagnosing and treating of pelvic floor disorders. The event was also audited by formal representatives from the American Society of Colon & Rectal Surgeons (ASCRS), the Society of Abdominal Radiology (SAR), the International Continence Society, the American Urogynecologic Society, the International Urodynamics Association, and the Society Gynecologic Surgeons. The meeting was funded by the ASCRS, who graciously helped host the PFDC Expert meeting the day before the ASCRS annual meeting. The participants at the expert consensus meeting analyzed all of the proposed radiological definitions measuring or identifying each of the conditions reviewed in this statement, ultimately recommending a synoptic reporting template that included the recommended steps for a thorough and clinically relevant examination, as well as the clinically relevant radiological definitions for common defecatory pelvic floor disorders seen on FD. They labeled this final template as the “Fluoroscopic Interpretation Template for the Initial Measurement of Patient Reported Defecatory Pelvic Floor Complaints” or Fluoro-IMPACT (Table 2). For a recommendation to make it into the Fluoro-IMPACT template, an expert consensus was required. Consensus was defined as at least 70% agreement or more from the in-person or remote voting participants at the PFDC Meeting. When consensus was not reached, the workgroups performed additional research and literature reviews to clarify additional questions raised. A subsequent committee meeting was held to conduct final voting on the recommendations and definitions listed in the Fluoro-IMPACT document, while keeping the directives of the expert consensus panel discussions in mind. TABLE 2. - The clinically relevant interpretation synoptic template based on these consensus recommendations TEMPLATE The participants at the expert consensus meeting analyzed all of the proposed radiological definitions measuring or identifying each of the conditions reviewed in this statement, ultimately recommending a synoptic reporting template that included the recommended steps for a thorough and clinically relevant examination, as well as the clinically relevant radiological definitions for common defecatory pelvic floor disorders seen on fluoroscopic defecography. They labeled this final template as the Fluoroscopic Interpretation Template for the Initial Measurement of Patient Reported Pelvic Floor Complaints (Fluoro-IMPACT) TECHNIQUE The patient was informed of the nature of the procedure. An external radiopaque marker [was/was not] placed on the perineum. Fluoroscopy and spot images were obtained in the lateral projection with patient in sitting position while at rest and during defecation. Scout anteroposterior radiograph of lower abdomen and pelvis [discuss findings]. Digital rectal examination: [not performed/ mention presence or absence of masses, sphincter tone, etc] Contrast used: Rectal: […] cc of barium paste inserted into rectum Vaginal: [None/ if yes, give type and amount] Small bowel: [None/ if yes, give type and amount] Bladder: [None/ if yes, give type and amount] FINDINGS Evacuation: Patient made [good/moderate/poor efforts to evacuate/had fecal incontinence and could not be evaluated during evacuation during the test]. Perineal descent: Excessive descent [present/absent] (assess location of anorectal junction at maximal defecation relative to rest or measure relative to PCL). Anterior compartment: There [is/is no significant] mass effect on the anterior vaginal wall due to bladder descent. Findings [are/are not] consistent with cystocele. Middle compartment: There [is/is no significant prolapse] of the vaginal apex. Cul-de-sac hernia (if visible): [None/sigmoidocele, enterocele, peritoneocele (describe and if quantifying measure relative to PCL and vagina)] [extending into the rectovaginal septum to the level of the upper one-third of the vaginal wall/middle two-thirds of the vaginal wall/all the way to the pelvic floor] and extending […] cm below the PCL. Posterior compartment: There was [complete/incomplete] emptying of the rectum with [no rectal contrast evacuated/one-third of the baseline rectal contrast evacuated/two-thirds of the rectal contrast evacuated/ all rectal contrast still evacuated] at the end of the examination. [Contrast was retained in the entire rectum] [Contrast was retained in the rectocele only]. Anorectal angle: There is [expected widening/paradoxical narrowing] of the anorectal angle during defecation or attempted evacuation. Anorectal angle at rest: Anorectal angle at defecation/attempted evacuation: The findings [are/are not] consistent with pelvic floor dyssynergia. Rectocele: [Present/absent] (report size/retention of contrast) Patient manipulation for defecation: The patient [did use/did not use manipulation to assist emptying [of rectum] [of rectocele] [of both the rectum and rectocele]. Type and effectiveness of manipulation: [Describe/N/A] Intussusception/prolapse: [Present/absent (report intrarectal, intra-anal, external)] Other findings: [Both imaging and clinical observation (ie, does the patient have persistent symptoms despite an empty rectum?)] Radiation exposure: Fluoroscopy time: XX min; Dose: XX mGy; Dose Area Product: XX Gy×cm2; Number of Spot films: XX IMPRESSION […] N/A = not applicable; PCL = pubococcygeal line. Final Review Once the document was finalized, the proposed recommendations were reviewed by the ASCRS Pelvic Floor Disorders Steering Committee. This steering committee develops clinical practice recommendations for colorectal pelvic floor disorders based on best available evidence. The ASCRS Steering Committee edited the document and sent it to the ASCRS Executive Committee for final approval for publication. Similar reviews and endorsements were also given by the American Urogynecologic Society Publication Committee, the SAR Board of Directors, the SAR Disease Focus Panel on Pelvic Floor Dysfunction, the International Continence Society Board of Directors, and supported by the Board of Directors of the Society of Gynecologic Surgeons. In accordance with their policy, the International Urogynecological Association Board of Directors distributed the document for review by its entire membership and subsequently endorsed the document as well. RECOMMENDATIONS General Considerations 1. Findings on fluoroscopic defecography report are highly dependent on patient effort, and the quality of defecatory effort should be reported as “good,” “moderate,” or “poor” to provide clinical context (Degree of consensus: 100%). Fluoroscopic defecography is performed following careful patient counseling to assure their understanding of the goal of the study, its benefits, and its limitations. The study generates significant patient anxiety, and care must be taken to assure that the radiology team is caring, professional, and understanding of the challenges faced by patients when asked to evacuate in public.7 The patient should be carefully coached to empty fully and push/bear down completely during the test to assure maximum visualization of pathology, without having to worry about spillage of contrast or “accidents.” Radiologists should be aware that many of patients experiencing evacuatory dysfunction may have had a history of prior sexual abuse, and utmost care and kindness is needed to coax patients through this experience.8 It is also important to stress that these fluoroscopic images must be obtained in the sitting position on a radiolucent commode (or at the edge of the fluoroscopy table), so as to best mimic physiologic position. When this is not possible, consortium experts agreed (degree of consensus: 81%) that a supine imaging examination (such as MRI) could be acquired, but that the interpretation of pathology in these cases may be difficult, especially if the test is “normal” and its findings do not match clinical impression. Coaching and support should continue throughout the process of image acquisition to assure patients push hard and try to expel the contrast despite their embarrassment. “Good effort” to empty the contrast should be defined as either complete rectal emptying during the examination, or at least 3 attempts to evacuate. Each attempt should last a minimum of 30 seconds (if unable to fully empty the rectum). If patients do not defecate after 3 tries, they should be asked to expel in the privacy of a bathroom and then have repeat radiographs to see if they were able to evacuate the contrast in the bathroom. In the cases when patients are successful in evacuating in the bathroom but not during the test, their defecatory effort should be labeled as either “poor” or “moderate,” depending on the level of rectal emptying achieved during the test. The emphasis on effort is demonstrated by these images that demonstrate additional pathology as effort is increased (Fig. 1).FIGURE 1.: The importance of sufficient effort during defecography. The vagina (V) is anteriorly displaced by the rectocele (RC) pushing forward from the rectum (R). There is increasing effort from A to C that demonstrates enterocele (E), prolapse (P), and intussusception of the enterocele (I). A, Initial attempt to defecate failed. B, After the third attempt with good effort, an enterocele (E) is demonstrated with, C, Subsequent demonstration of prolapse (P) and intussusception of the enterocele (I). 2. A radiopaque marker should be placed on the perineal body as a point of anatomic reference (Degree of consensus: 92%). A perineal marker should be used, because, without a visible landmark, it is difficult to identify the surface of the perineal skin on FD. A perineal marker may be used as a landmark for localization and measurement purposes, and several marking techniques have been presented in the literature. For example, as the rectal syringe or catheter is removed after barium paste instillation, a small amount of barium paste may be injected in the anal canal and at the anal verge to localize the level of the perineum. Although the placed barium paste would localize the perineum, it does not serve as a surrogate for a ruler or an indicator of size. Measurements made on the fluoroscopic images may be calibrated against a radiopaque marker of predetermined size. Palmer et al9 proposed an example of “a penny (19 mm)” as a marker to be taped to the perineum. Gonçalves et al10 reported a specially designed marker to visualize the pubococcygeal line (PCL) and perineum for defecography. A barium tablet (13 mm) would also serve the purpose (Fig. 2).FIGURE 2.: How to measure a rectocele. Vertical line indicates the expected location of the anterior wall of the rectum (R). The horizontal line measures the rectocele (RC) protruding into the vagina (V). Size of the rectocele can be estimated by utilizing the 1.3-cm barium tablet as a ruler (indicated by T). 3. The examination should be done under fluoroscopic evaluation, rather than only with static single-exposure radiographs (Degree of consensus: 94%). Because defecation is a dynamic act that involves a complex interplay of anorectal and pelvic floor muscles and anal sphincters, abnormalities during defecation are best evaluated with real-time imaging. In comparison with spot images alone, real-time FD allows for direct visualization of all phases of evacuation, providing qualitative and quantitative information on the defecatory process. Fluoroscopic defecography remains one of the most appropriate imaging studies to evaluate patients with symptoms of obstructed defecation where commonly encountered pathologies include, but are not limited to, rectoceles, intussusception, cul-de-sac hernias, and anismus. The technique for performing FD has not changed over the years, but technological advances have allowed for improved image capture techniques. Videotape, CD, and DVD image capture are still being used; however, direct digital capture of real-time fluoroscopy, archived directly to Picture Archiving and Communications Systems, is becoming the most common method for image acquisition.9,11,12 With Picture Archiving and Communications Systems archiving of cine defecography, FD studies become portable, allowing the referring physician access to the complete examination for easier review and integration into patient care planning. During the consortium meeting, some concerns were raised regarding the level of radiation exposure to patients during FD. Goi et al13 demonstrated a mean effective dose equivalent of 4.9 mSV for women undergoing FD, which is approximatively half the amount of a CT of the abdomen and pelvis. To minimize radiation exposure, FD should be obtained only when truly indicated based on clinical findings, particularly in women of childbearing age. Furthermore, radiologists must apply the ALARA (as low as reasonably achievable) principle to minimize radiation exposure to patients and used pulsed fluoroscopic acquisition whenever possible. In patients with contraindications to radiation exposure, alternate studies such as pelvic floor MRI defecography or dynamic pelvic floor ultrasound should be considered. Additional recommendations on the language and procedures to perform MRI and pelvic floor ultrasound are forthcoming, together with recommended MRI-IMPACT and ULTRASOUND-IMPACT interpretation templates. Contrast Considerations 1. Vaginal contrast should be used to provide relevant clinical information at defecography (Degree of consensus: 87%). The literature regarding the instillation of contrast within each pelvic organ for a FD is limited and techniques vary significantly between studies.14–17 The use of vaginal, bladder, and small-bowel contrast for FD was debated within the consortium, and a consensus was reached that vaginal contrast was beneficial, because the vagina is an important landmark against which all other structures are described to better understand the interplay of small bowel, colon, and rectum during defecation. Adding vaginal contrast is thought to increase ease of identifying abnormal pelvic organ descent including rectocele, enterocele, peritoneocele, and cystocele. To assure full opacification of contrast, we recommend instillation of contrast via either a Foley or a bulb syringe. We do not recommend soaking a tampon and placing it into the vagina because the tampon may function as a pessary, splinting the vaginal wall and confounding interpretation of findings. 2. Bladder contrast need not be used routinely for defecography studies in patients with evacuatory dysfunction (Degree of consensus: 77%). Instillation of bladder contrast does not contribute to the investigation of evacuatory dysfunction and need not be used routinely in these patients, thus saving time and patient discomfort associated with bladder catheterization. Bladder contrast is, of course, beneficial when performing a cystogram or cystodefecography for patients with predominant anterior compartment or urinary complaints. Although this consensus effort was focused primarily on patients with defecatory dysfunction, the expert panel did feel that referring clinicians would be interested in knowing whether the patient has anterior vaginal vault prolapse in association with a cul-de-sac hernia. This observation can be made, however, with vaginal contrast alone, while minimizing the overall level of patient discomfort. In cases when further details about the bladder anatomy may be needed, other imaging modalities such as MRI would be more beneficial than adding bladder contrast to fluoroscopy.18 3. Small-bowel contrast can assist in the identification of enterocele, but there was no consensus on whether it should be routinely used (Degree of consensus: 68%, threshold not reached). Therefore, small-bowel contrast is not recommended as a minimum requirement for routine evaluation of pelvic organ prolapse. The expert panel debated on the routine use of small-bowel contrast for FD. The proponents for the routine use of small-bowel contrast argued that opacification of small bowel allows for identification of any small-bowel herniation. Small-bowel contrast can add to the anatomical information fluoroscopy can provide and can be considered if the clinical scenario warrants it. The small bowel can enter the rectovaginal space (enterocele), or the rectum and the vagina (prolapse). All of these are substantially easier to identify when the small bowel is visible (Fig. 3). Additionally, cephalad displacement of the opacified small bowel can be seen in the setting of pelvic masses. In some instances, abnormalities such as enterocele can be suggested based on the scout images when small-bowel contrast is utilized (Fig. 4). However, members of the consortium against routine use of small-bowel contrast argued that the content of a cul-de-sac hernia was not relevant to surgical or clinical decision making. It was felt that, regardless of its content (small bowel, sigmoid colon, or omentum), the patient with any type of cul-de-sac hernia would undergo the same treatment. A cul-de-sac hernia can be identified without small-bowel contrast by observing the presence of a wide separation between the vagina and the rectum (Fig. 5). Experts argued that the addition of contrast extended the length and the discomfort of the study, especially given the possible difficulties in expelling barium from the GI tract in patients with added slow-transit constipation. Weighing these pros and cons, the consortium experts voted against routine use of small-bowel opacification, but with a very narrow margin, and with the caveat that bowel contrast could certainly be added to standard radiological protocols per local practice patterns or at the request of referring providers when this additional anatomical information is useful clinically.FIGURE 3.: Challenges from insufficient small-bowel contrast. The suboptimal opacification of the small bowel makes this enterocele harder to see. Small bowel (long arrow), rectum (short arrow), and vagina (arrowhead).FIGURE 4.: Enterocele on scout image. As can be seen on this scout image before administration of rectal and vaginal contrast, there is extension of the small bowel into the pelvis and deep into the rectovaginal space (arrow).FIGURE 5.: Peritoneocele/cul-de-sac hernia. Observe the empty space between the vagina (V) and the rectum (R). This is filled with fat or fluid, and it represents a peritoneocele (P). The rectum (R) can be seen posteriorly, and the vagina (V) is displaced anteriorly by this peritoneocele (P). Its size can be estimated by the presence of the 1.3-cm barium tablet (T).Imaging Technique 1. Static images at rest should be captured to obtain a clinical baseline. However, there is no clinical benefit in obtaining initial “strain” images to assess for fecal incontinence and this sequence can be omitted from routine protocols (Degree of consensus:79%). Contrast leakage during defecography is multifactorial and is related to viscosity of the contrast medium, sphincter strength, rectal compliance, and the anorectal angle. There is a dearth of studies evaluating contrast leakage on defecography as it relates to disease severity or response to therapy. There were 3 studies that evaluated contrast leakage during defecography and correlated it with findings on anorectal manometry. In a study of 50 patients with fecal incontinence, Rex et al19 concluded that leakage of contrast at rest was a specific but not sensitive predictor of impaired sphincter strength as measured by manometry. In another study evaluating incontinence on defecography, Bielefeldt et al20 noted leakage of contrast spontaneously in 13 patients, and a majority of these patients (12/13) demonstrated incomplete closure of the anal canal at rest. In a prospective study evaluating 160 consecutive patients referred for both anorectal manometry and defecography, Kruyt et al21 described using a contrast medium of standard viscosity and scored leakage of contrast during rest, squeeze, Valsalva, and coughing. The patients were classified in 3 groups: fully continent (no leakage in the 3 phases), intermediate (leakage in 1 or 2 phases), and fully incontinent (leakage in all 3 phases). In this study, the degree of leakage correlated with an obtuse anorectal angle; decreased resting pressures and decreased squeeze pressures. However, it was noted that some patients in each group had normal values for anorectal angles, resting pressures, and squeeze pressures. Although these radiological observations are interesting, most of the clinicians at the consortium meeting felt that the diagnosis of fecal incontinence is ultimately a clinical one. Furthermore, the addition of this sequence could lead to patient confusion and loss of contrast before the clinically relevant evacuation images that would follow. Given the lack of proven clinical relevance, the panel concluded that these images can be omitted. 2. Evacuation images should be obtained, preferably in the sitting position (Degree of consensus: 100%). Functional evaluation during rectal evacuation is the hallmark of fluorodefecography. One of the advantages of this examination over supine MRI or other imaging examinations is that it can closely simulate the physiologic act of natural defecation when images are obtained in a seated position. Although the literature has shown variable results comparing upright and supine examina

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call