Abstract

In this paper, we design consensus algorithms for multiple unmanned aerial vehicles (UAV). We mainly focus on the control design in the face of measurement noise and propose a position consensus controller based on the sliding mode control by using the distributed UAV information. Within the framework of Lyapunov theory, it is shown that all signals in the closed-loop multi- UAV systems are stabilized by the proposed algorithm, while consensus errors are uniformly ultimately bounded. Moreover, for each local UAV, we propose a mechanism to define the trustworthiness, based on which the edge weights are tuned to eliminate negative influence from stubborn agents or agents exposed to extremely noisy measurement. Finally, we develop software for a nano UAV platform, based on which we implement our algorithms to address measurement noises in UAV flight tests. The experimental results validate the effectiveness of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.