Abstract

This paper studies the consensus control of multiagent systems with binary-valued observations. An algorithm alternating estimation and control is proposed. Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time. Based on the estimates, each agent designs the consensus control with a constant gain at some skipping time. The states of the system are updated by the designed control, and the estimation and control design will be repeated. For the estimation, the projected empirical measure method is proposed for the binary-valued observations. The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time &#x0028 the same order as that in the case of accurate outputs &#x0029. For the consensus control, a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations. And, there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents&#x02BC states. Finally, the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature. Simulations are given to demonstrate the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.