Abstract

<p>This paper concerns the consensus problem of linear time-invariant multi-agent systems (MASs) with multiple state delays and communicate delays. Consensus control is widely applied in spacecraft formation, sensor networks, robotic manipulators, autonomous vehicles, and others. By introducing a linear transformation, the consensus problem of the delayed MAS under an undirected network was converted into a robust asymptotic stability problem associated with the eigenvalues of the normalized Laplacian matrix of the network. By means of the argument principle and optimization technologies, a numerical controller design method was presented for the delayed MAS to reach consensus. The effectiveness of the proposed approach was illustrated by some numerical examples. The proposed approach may be applied to multi-agent systems with distributed delays.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.