Abstract

ABSTRACTThis paper addresses the consensus problem of leader-following nonlinear multi-agent systems with iterative learning control. The assumption that only a small portion of following agents can receive the information of leader agent is considered. To approximate the nonlinear dynamics of a given system, the radial basis function neural network is introduced. Then, a distributed adaptive iterative learning control protocol with an auxiliary control term is designed, where the estimates of nonlinear dynamics are applied in control protocol design and three adaptive laws are presented. Furthermore, the convergence of the proposed control protocol is analysed by Lyapunov stability theory. Finally, a simulation example is provided to demonstrate the validity of theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.