Abstract

An efficient control of large-scale unmanned aerial vehicle (UAV) swarm to establish a complex formation is one of the most challenging tasks. This paper investigates a novel multi-layer topology network and consensus control approach for a large-scale UAV swarm moving under a stable configuration. The proposed topology can make the swarm remain robust in spite of the large number of UAVs. Then a potential function-based controller is developed to control the UAVs in realizing autonomous configuration swarming under the consideration of mutual collision, and the stability of the controller from the individual UAV to the entire swarm system is analyzed by a Lyapunov approach. Afterwards, a yaw angle adjustment approach for the UAVs to reach consensus is developed for the multi-layer swarm, then the direction state of each UAV converges with a fast rate. Finally, simulations are performed on the large-scale UAV swarm system to demonstrate the effectiveness of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.