Abstract

A class of resource allocation problems with equality constraint are considered in this paper, such as economic dispatch problem in smart grid systems, which is essentially an optimization problem. Inspired by the Lagrange multiplier method, the resource allocation problem is transformed into a multi-agent consensus problem for large-scale networked distributed nodes. A consensus-based distributed fixed-time optimization algorithm is presented, where the information exchange network is depicted by a strongly connected and weight-balanced digraph. This type of communication network can ensure that the equality constraint always holds. Moreover, a new globally fixed-time stability theorem for nonlinear systems is first given in this paper. Based on this theorem and consensus theory, the optimal resource allocation scheme can be given in a fixed time. Finally, the application and comparison of the designed algorithm show that the algorithm can effectively solve the allocation problem of power resources such as economic dispatch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call