Abstract

The development of single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) technology has led to great opportunities for the identification of heterogeneous cell types in complex tissues. Clustering algorithms are of great importance to effectively identify different cell types. In addition, the definition of the distance between each two cells is a critical step for most clustering algorithms. In this study, we found that different distance measures have considerably different effects on clustering algorithms. Moreover, there is no specific distance measure that is applicable to all datasets. In this study, we introduce a new single-cell clustering method called SD-h, which generates an applicable distance measure for different kinds of datasets by optimally synthesizing commonly used distance measures. Then, hierarchical clustering is performed based on the new distance measure for more accurate cell-type clustering. SD-h was tested on nine frequently used scRNA-seq datasets and it showed great superiority over almost all the compared leading single-cell clustering algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.