Abstract

This paper considers consensus strategy design for double-integrator multi-agent systems with matched disturbances under a directed graph. Specifically, we consider the case where both the control inputs and velocities of the agents are subject to different and asymmetric constraints. A novel distributed algorithm exploiting saturation functions is proposed to achieve asymptotic consensus without violating the predefined velocity and actuator saturation constraints. Subsequently, we extend the obtained results to event-triggered communication, where agent position broadcasting occurs only when specific triggering conditions are met. We rigorously prove that there exists a positive minimum inter-event time to rule out Zeno behavior. Finally, the simulation results confirm the theoretical findings and illustrate the achievable performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.