Abstract

Interferon-stimulated gene 15 (ISG15) encodes an ubiquitin-like protein that covalently conjugates protein. Protein modification by ISG15 (ISGylation) is known to inhibit the replication of many viruses. However, studies on the viral targets and viral strategies to regulate ISGylation-mediated antiviral responses are limited. In this study, we show that human cytomegalovirus (HCMV) replication is inhibited by ISGylation, but the virus has evolved multiple countermeasures. HCMV-induced ISG15 expression was mitigated by IE1, a viral inhibitor of interferon signaling, however, ISGylation was still strongly upregulated during virus infection. RNA interference of UBE1L (E1), UbcH8 (E2), Herc5 (E3), and UBP43 (ISG15 protease) revealed that ISGylation inhibits HCMV growth by downregulating viral gene expression and virion release in a manner that is more prominent at low multiplicity of infection. A viral regulator pUL26 was found to interact with ISG15, UBE1L, and Herc5, and be ISGylated. ISGylation of pUL26 regulated its stability and inhibited its activities to suppress NF-κB signaling and complement the growth of UL26-null mutant virus. Moreover, pUL26 reciprocally suppressed virus-induced ISGylation independent of its own ISGylation. Consistently, ISGylation was more pronounced in infections with the UL26-deleted mutant virus, whose growth was more sensitive to IFNβ treatment than that of the wild-type virus. Therefore, pUL26 is a viral ISG15 target that also counteracts ISGylation. Our results demonstrate that ISGylation inhibits HCMV growth at multiple steps and that HCMV has evolved countermeasures to suppress ISG15 transcription and protein ISGylation, highlighting the importance of the interplay between virus and ISGylation in productive viral infection.

Highlights

  • Type I interferons (IFNs) are multifunctional cytokines that represent crucial components of the innate immune response to viral infection

  • Given that Interferon-stimulated gene 15 (ISG15) and the enzymes involved in ISGylation are strongly induced upon virus infection, understanding the interplay between virus and ISGylation is an important issue in virus-host interaction

  • In this study we demonstrate that ISGylation suppresses human cytomegalovirus (HCMV) infection but the virus is armed with countermeasures that consecutively reduce ISG15 transcription and protein ISGylation

Read more

Summary

Introduction

Type I interferons (IFNs) are multifunctional cytokines that represent crucial components of the innate immune response to viral infection. Activated STAT1 and STAT2 heterodimerize and bind to IFN regulatory factor 9 (IRF9) to form a complex called IFN-stimulated gene factor 3 (ISGF3). This complex translocates into the nucleus and induces ISGs with diverse antiviral activities by binding to IFNstimulated response elements (ISREs) in their promoters (for review [1]). ISG15 was identified as an IFN-inducible ubiquitin homolog. UBP43 is IFN-inducible [13, 14] and acts as a negative regulator of innate immune responses independent of its protease activity but dependent on its direct interaction with IFNAR2, a subunit of the type I IFN receptor [15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call