Abstract

Background: Although the effect of whey protein intake on protein metabolism in exercise-loaded skeletal muscle has been well documented, little has been reported on its effect on resting muscle. The effects of whey protein intake on protein metabolism in resting mouse skeletal muscle were investigated. Methods: Mice were fed AIN-93G composed of either casein or whey protein as the protein source for 3 or 7 consecutive days. The gastrocnemius muscle was excised, and the expression levels of the regulatory factor, mTOR, and its subunits, Raptor and Rictor, were measured by real-time PCR. The protein expression levels of mTOR and its phosphorylated form were measured by immunofluorescent western blotting. The effects of whey protein were compared to those of the case in control. Results: mTOR expression increased in the gastrocnemius muscle of mice fed whey protein for 7 consecutive days. The expression of Raptor significantly increased, whereas that of Rictor did not change, suggesting a dominant formation of mTORC1 relating to the upregulation of protein synthesis. The protein levels of mTOR and its phosphorylated form significantly increased in mice fed whey protein, indicating enhanced protein synthesis. Increased mTOR expression was not seen in the gastrocnemius muscle of mice fed whey protein for 3 consecutive days. Conclusions: These results indicate that the intake of whey protein for 7 consecutive days, but not 3 days, upregulates the mRNA and protein expression of mTOR in the resting gastrocnemius muscle of mice, suggesting its ability to enhance protein synthesis. Consecutive-day intake of whey protein may induce constitutive alteration of the skeletal muscle, including continuous upregulation of muscle protein synthesis.

Highlights

  • IntroductionSarcopenia is an age-related loss of muscle mass and quality [1], which is thought to be caused by combined age-related incidences including decreased protein supply due to reduced food intake, enhanced protein breakdown induced by insulin resistance, decreased potency of protein synthesis, and persistent chronic low-grade inflammation caused by aging [2]

  • These results indicate that the intake of whey protein for 7 consecutive days, but not 3 days, upregulates the mRNA and protein expression of mTOR in the resting gastrocnemius muscle of mice, suggesting its ability to enhance protein synthesis

  • Sarcopenia is an age-related loss of muscle mass and quality [1], which is thought to be caused by combined age-related incidences including decreased protein supply due to reduced food intake, enhanced protein breakdown induced by insulin resistance, decreased potency of protein synthesis, and persistent chronic low-grade inflammation caused by aging [2]

Read more

Summary

Introduction

Sarcopenia is an age-related loss of muscle mass and quality [1], which is thought to be caused by combined age-related incidences including decreased protein supply due to reduced food intake, enhanced protein breakdown induced by insulin resistance, decreased potency of protein synthesis, and persistent chronic low-grade inflammation caused by aging [2]. A loss of muscle impacts physical body movements and whole-body metabolic homeostasis, as muscles are an endocrine organ in which hormones and cytokines produced by myocytes affect the whole-body physiology [3]. Results: mTOR expression increased in the gastrocnemius muscle of mice fed whey protein for 7 consecutive days. The protein levels of mTOR and its phosphorylated form significantly increased in mice fed whey protein, indicating enhanced protein synthesis. Increased mTOR expression was not seen in the gastrocnemius muscle of mice fed whey protein for 3 consecutive days. Conclusions: These results indicate that the intake of whey protein for 7 consecutive days, but not 3 days, upregulates the mRNA and protein expression of mTOR in the resting gastrocnemius muscle of mice, suggesting its ability to enhance protein synthesis. Consecutive-day intake of whey protein may induce constitutive alteration of the skeletal muscle, including continuous upregulation of muscle protein synthesis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.