Abstract

There are many hypotheses accounting for detrusor overactivity; however, the exact mechanisms are still incompletely understood. We used a model of bladder outlet obstruction in male guinea pigs as a way to produce detrusor overactivity. The objective was to determine whether changes in voiding of obstructed guinea pigs correlates with specific changes in contractile activity of their isolated bladders in vitro. Conscious voiding activity of sham-operated and obstructed animals was measured in metabolic cages. Contractile activity (spontaneous or evoked by distension, electrical field stimulation or cholinergic agonists) was recorded via a pressure transducer in the isolated bladders in vitro. The frequency of conscious voiding increased (while voiding volume decreased) in the obstructed group, compared with the sham-operated group, 4 weeks after surgical intervention. In comparison to the sham-operated animals, the bladders from the obstructed guinea pigs were enlarged and inflamed, their frequency of spontaneous contractions was higher, while the amplitudes of electrical field stimulation (EFS)-induced contractions and bladder compliance were lower. Changes in conscious voiding during obstruction were significantly associated with alterations in structural parameters (bladder weight, thickness and histological damage score) and functional contractile parameters (frequency of spontaneous contractions, amplitude of EFS-induced contractions and bladder compliance) of their isolated bladders. Our findings revealed significant association between conscious voiding and structural and contractile activity changes of the isolated bladders in obstruction. The data suggest that change in contractile activity of the bladder itself is a major contributor to obstruction-induced bladder overactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.