Abstract

Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

Highlights

  • The evolution of civilization points to a progressive increase of the interrelations between human minds, where by ‘‘mind’’ we mean a set of processes carried out by the brain [1]

  • We identified first a transcranial magnetic stimulation (TMS) phosphene-producing hotspot in the right visual occipital cortex, which was used for the active condition

  • On March 28th, 2014, 140 bits were encoded by the brain-computer interfaces (BCI) emitter in Thiruvananthapuram and automatically sent via email to Strasbourg, where the computer-brain interfaces (CBI) receiver was located

Read more

Summary

Introduction

The evolution of civilization points to a progressive increase of the interrelations between human minds, where by ‘‘mind’’ we mean a set of processes carried out by the brain [1]. Previous attempts to realize this vision include demonstrations of bidirectional computer-brain communication [3,4,5] and cortical-spinal communication [6] in the monkey, and hippocampus-to-hippocampus [7] or social communication [8] in the rat – all of invasive nature. Despite these and other significant advances with human subjects [9,10], invasive methods in humans remain severely limited in their practical usefulness.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.