Abstract

Each year, up to three million deaths due to malaria and close to five billion episodes of clinical illness possibly meriting antimalarial therapy occur throughout the world, with Africa having more than 90% of this burden. Almost 3% of disability adjusted life years are due to malaria mortality globally, 10% in Africa. New information is presented in this supplement on malaria-related perinatal mortality, occurrence of human immunodeficiency virus in pregnancy, undernutrition, and neurologic, cognitive, and developmental sequelae. The entomologic determinants of transmission and uses of modeling for program planning and disease prediction and prevention are discussed. New data are presented from the Democratic Republic of the Congo, Tanzania, Ethiopia, and Zimbabwe on the increasing urban malaria problem and on epidemic malaria. Between 6% and 28% of the malaria burden may occur in cities, which comprise less than 2% of the African surface. Macroeconomic projections show that the costs are far greater than the costs of individual cases, with a substantial deleterious impact of malaria on schooling of patients, external investments into endemic countries, and tourism. Poor populations are at greatest risk; 58% of the cases occur in the poorest 20% of the world's population and these patients receive the worst care and have catastrophic economic consequences from their illness. This social vulnerability requires better understanding for improving deployment, access, quality, and use of effective interventions. Studies from Ghana and elsewhere indicate that for every patient with febrile illness assumed to be malaria seen in health facilities, 4-5 episodes occur in the community. Effective actions for malaria control mandate rational public policies; market forces, which often drive sales and use of drugs and other interventions, are unlikely to guarantee their use. Artemisinin-based combination therapy (ACT) for malaria is rapidly gaining acceptance as an effective approach for countering the spread and intensity of Plasmodium falciparum resistance to chloroquine, sulfadoxine/pyrimethamine, and other antimalarial drugs. Although costly, ACT ($1.20-2.50 per adult treatment) becomes more cost-effective as resistance to alternative drugs increases; early use of ACT may delay development of resistance to these drugs and prevent the medical toll associated with use of ineffective drugs. The burden of malaria in one district in Tanzania has not decreased since the primary health care approach replaced the vertical malaria control efforts of the 1960s. Despite decentralization, this situation resulted, in part, from weak district management capacity, poor coordination, inadequate monitoring, and lack of training of key staff. Experience in the Solomon Islands showed that spraying with DDT, use of insecticide-treated bed nets (ITNs), and health education were all associated with disease reduction. The use of nets permitted a reduction in DDT spraying, but could not replace it without an increased malaria incidence. Baseline data and reliable monitoring of key outcome indicators are needed to measure whether the ambitious goals for the control of malaria and other diseases has occurred. Such systems are being used for evidence-based decision making in Tanzania and several other countries. Baseline cluster sampling surveys in several countries across Africa indicate that only 53% of the children with febrile illness in malarious areas are being treated; chloroquine (CQ) is used 84% of the time, even where the drug may be ineffective. Insecticide-treated bed nets were used only 2% of the time by children less than five years of age. Progress in malaria vaccine research has been substantial over the past five years; 35 candidate malaria vaccines are in development, many of which are in clinical trials. Development of new vaccines and drugs has been the result of increased investments and formation of public-private partnerships. Before malaria vaccine becomes deployed, consideration must be given to disease burden, cost-effectiveness, financing, delivery systems, and approval by regulatory agencies. Key to evaluation of vaccine effectiveness will be collection and prompt analysis of epidemiologic information. Training of persons in every aspect of malaria research and control is essential for programs to succeed. The Multilateral Initiative on Malaria (MIM) is actively promoting research capacity strengthening and has established networks of institutions and scientists throughout the African continent, most of whom are now linked by modern information-sharing networks. Evidence over the past century is that successful control malaria programs have been linked to strong research activities. To ensure effective coordination and cooperation between the growing number of research and control coalitions forming in support of malaria activities, an umbrella group is needed. With continued support for scientists and control workers globally, particularly in low-income malarious countries, the long-deferred dream of malaria elimination can become a reality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.