Abstract

A common representation of data within the context of multidimensional scaling (MDS) is a collection of symmetric proximity (similarity or dissimilarity) matrices for each of M subjects. There are a number of possible alternatives for analyzing these data, which include: (a) conducting an MDS analysis on a single matrix obtained by pooling (averaging) the M subject matrices, (b) fitting a separate MDS structure for each of the M matrices, or (c) employing an individual differences MDS model. We discuss each of these approaches, and subsequently propose a straightforward new method (CONcordance PARtitioning—ConPar), which can be used to identify groups of individual-subject matrices with concordant proximity structures. This method collapses the three-way data into a subject×subject dissimilarity matrix, which is subsequently clustered using a branch-and-bound algorithm that minimizes partition diameter. Extensive Monte Carlo testing revealed that, when compared to K-means clustering of the proximity data, ConPar generally provided better recovery of the true subject cluster memberships. A demonstration using empirical three-way data is also provided to illustrate the efficacy of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call